
The Euclidean Algorithm in Circle/Sphere
Packings

Arseniy (Senia) Sheydvasser

October 25, 2019



Circle/Sphere Inversions
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I Choose a circle C with center (x0, y0) and radius R.

I To invert a point (x , y) through, measure the distance r
between (x0, y0) and (x , y), and move (x , y) to distance R/r
from (x0, y0) (along the same ray).
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Circle/Sphere Inversions

Definition
Möb(Rn) is the group generated by n-sphere reflections in
Rn ∪ {∞}.

Question
Let Γ be a subgroup of Möb(Rn), and S an n-sphere. What does
the orbit Γ.S look like? Can we compute it effectively?
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Let Γ be a subgroup of Möb(Rn), and S an n-sphere. What does
the orbit Γ.S look like? Can we compute it effectively?



Motivation

Question
What analogs of the Apollonian circle packing are there?



Motivation

Question
What do hyperbolic quotient manifolds Hn/Γ look like?
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Accidental Isomorphisms

Question
How do you even represent elements in Möb(Rn)?

Möb0(R) SL(2,R)/{±1}

Möb0(R2) SL(2,C)/{±1}

Möb0(R3)

Möb0(R4)

...

I Let

(
a b
c d

)
be a matrix in

SL(2,R) or SL(2,C).

I z 7→ (az + b)(cz + d)−1 is
an orientation-preserving
Möbius transformation.

I z 7→ (az + b)(cz + d)−1 is
an orientation-reversing
Möbius transformation.
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Möb0(R) SL(2,R)/{±1}
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Vahlen’s Matrices

I Vahlen, 1901: For any n, there is an isomorphism between
Möb(Rn) and a group of 2× 2 matrices with entries in a
(subset of a) Clifford algebra, quotiented by {±1}.

I We’ll consider the case n = 3, Möb(R3).

I Define

(w + xi + yj + zk)‡ = w + xi + yj − zk

and H+ = quaternions fixed by ‡ (i.e. with no k-component).

SL‡(2,H) =

{(
a b
c d

)
∈ Mat(2,H)

∣∣∣∣ab‡, cd‡ ∈ H+, ad‡ − bc‡ = 1

}
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What is SL‡(2,H) as a Group?

SL‡(2,H) =

{(
a b
c d

)∣∣∣∣ab‡, cd‡ ∈ H+, ad‡ − bc‡ = 1

}

Equivalently,

SL‡(2,H) =

{
γ ∈ SL(2,H)

∣∣∣∣γ ( 0 k
−k 0

)
γT =

(
0 k
−k 0

)}

Inverses are given as follows:(
a b
c d

)−1
=

(
d‡ −b‡
−c‡ a‡

)
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Möb(R3) as SL‡(2,H)

I There is an action on R3 ∪ {∞} = H+ ∪ {∞} defined by(
a b
c d

)
.z = (az + b)(cz + d)−1

I Every orientation-preserving element of Möb(R3) can be
written as z 7→ (az + b)(cz + d)−1.

I Every orientation-reversing element of Möb(R3) can be
written as z 7→ (az + b)(cz + d)−1.
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Arithmetic Groups

Definition
What sort of subgroups Γ of SL‡(2,H) should we consider?

I We will ask that Γ is discrete.

I We will ask that Γ carries some sort of algebraic structure.

I We will ask that Γ is arithmetic.

I Note that SL‡(2,H) can be seen as real solutions to a set of
polynomial equations.

I Roughly, an arithmetic group is the set of integer solutions to
that set of polynomial equations.

I Not quite true—can only define up to commensurability—but
ignore that.
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Examples of Arithmetic Groups

I Γ = SL(2,Z)

I Γ(N)

I SL(2,Z[i ])

I SL(2,Z[
√
−2])

I SL
(

2,Z
[
1+
√
−3

2

])
I What about SL‡(2,H)?
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Examples of Arithmetic Groups inside SL‡(2,H)

I Classical answer: choose a quadratic form q of signature
(4, 1), and take SO+(q,Z) (use the classical isomorphism
SO+(4, 1) ∼= Möb(R3) to make sense of this)

I Very hard to find any non-trivial elements of this group.

I −4X 2
1 + 2X2X1 + X3X1 − 3X4X1 + 5X 2

2 + 6X 2
3 + 7X 2

4 +
22X 2

5 − 5X2X3 + X2X4 + X3X4 − X2X5 + 2X3X5 + 4X4X5

I There is a better way!
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Examples of Arithmetic Groups inside SL‡(2,H)

I Let O be an order of H that is closed under ‡ (i.e. O = O‡).

I Then SL‡(2,O) = SL‡(2,H) ∩Mat(2,O) is an arithmetic
group.

I Here, an order means a sub-ring that is also a lattice.

I Example: O = Z⊕Z
√

2i ⊕Z
1 +
√

2i +
√

5j

2
⊕Z
√

2i +
√

10k

2
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Maximal ‡-Orders

I Why ask that O = O‡?

I Recall that

(
a b
c d

)−1
=

(
d‡ −b‡
−c‡ a‡

)

Definition
If O is an order of H closed under ‡, we say that O is a ‡-order. If
O is not contained inside any larger ‡-order, we say that it is a
maximal ‡-order.

I Originally studied by Scharlau (1970s) in the context of
central simple algebras, and then Azumaya algebras.

Theorem (S. 2017)

There is a polynomial time algorithm to determine whether a
lattice O is a maximal ‡-order. (Easy computation of the
discriminant, which is always square-free.)



Maximal ‡-Orders

I Why ask that O = O‡?

I Recall that

(
a b
c d

)−1
=

(
d‡ −b‡
−c‡ a‡

)
Definition
If O is an order of H closed under ‡, we say that O is a ‡-order. If
O is not contained inside any larger ‡-order, we say that it is a
maximal ‡-order.

I Originally studied by Scharlau (1970s) in the context of
central simple algebras, and then Azumaya algebras.

Theorem (S. 2017)

There is a polynomial time algorithm to determine whether a
lattice O is a maximal ‡-order. (Easy computation of the
discriminant, which is always square-free.)



Maximal ‡-Orders

I Why ask that O = O‡?

I Recall that

(
a b
c d

)−1
=

(
d‡ −b‡
−c‡ a‡

)
Definition
If O is an order of H closed under ‡, we say that O is a ‡-order. If
O is not contained inside any larger ‡-order, we say that it is a
maximal ‡-order.

I Originally studied by Scharlau (1970s) in the context of
central simple algebras, and then Azumaya algebras.

Theorem (S. 2017)

There is a polynomial time algorithm to determine whether a
lattice O is a maximal ‡-order. (Easy computation of the
discriminant, which is always square-free.)



Maximal ‡-Orders

I Why ask that O = O‡?

I Recall that

(
a b
c d

)−1
=

(
d‡ −b‡
−c‡ a‡

)
Definition
If O is an order of H closed under ‡, we say that O is a ‡-order. If
O is not contained inside any larger ‡-order, we say that it is a
maximal ‡-order.

I Originally studied by Scharlau (1970s) in the context of
central simple algebras, and then Azumaya algebras.

Theorem (S. 2017)

There is a polynomial time algorithm to determine whether a
lattice O is a maximal ‡-order. (Easy computation of the
discriminant, which is always square-free.)



Other Nice Properties of SL‡(2,O) (S.2019)

I Mat(2,O) is a homotopy invariant of the hyperbolic manifold
H4/SL‡(2,O)

I For every arithmetic group SO(q;Z), there is a group
SL‡(2,O) commensurable to it.

I Within its commensurability class, SL‡(2,O) is maximal—i.e.
it is not contained inside of any larger arithmetic group
commensurable to it.
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Sphere Packings

Choose some fix plane in R3 and act on it by SL‡(2,O). What will
this look like?

Z⊕ Zi ⊕ Z1+i+j
√
6

2 Z⊕ Zi
√

2⊕ Z1+i
√
2+j
√
5

2
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Practical Generation of Sphere Packings

Problem
How do you actually plot a sphere packing like this? How do you
find elements in SL‡(2,O)? How do you know when to stop?

Problem
Given a, b ∈ O such that ab‡ ∈ H+, can you give an algorithm to
determine whether there are c , d ∈ O such that(
a b
c d

)
∈ SL‡(2,O)?

I Easy to check that this is equivalent to an algorithm to check
whether aO + bO = O.
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The Euclidean Algorithm

Definition
Let R be an integral domain. Suppose there exists a well-ordered
set W and a function Φ : R →W such that for all a, b ∈ R such
that b 6= 0, there exists q ∈ R such that Φ(a− bq) < Φ(b). Then
we say that R is a Euclidean domain.

Theorem
If R is a Euclidean domain, then it is a principal ideal domain, and
there exists an algorithm that, on an input of a, b ∈ R, outputs
c , d ∈ R such that ad − bc = g, where g is a GCD of a and b.
Furthermore, SL(2,R) is generated by matrices of the form(

1 r
0 1

)
,

(
0 1
−1 0

)
,

(
u 0
0 u−1

)
,

where r ∈ R and u ∈ R×.



The ‡-Euclidean Algorithm

Definition
Let O be a maximal ‡-order. Suppose there exists a well-ordered
set W and a function Φ : O →W such that for all a, b ∈ O such
that b 6= 0 and ab‡ ∈ H+, there exists q ∈ O ∩ H+ such that
Φ(a− bq) < Φ(b). Then we say that O is a ‡-Euclidean ring.

Theorem
If O is a ‡-Euclidean ring, then O is a principal ring, and there
exists an algorithm that, on an input of a, b ∈ O such that
ab‡ ∈ H+, outputs c , d ∈ O such that ad‡ − bc‡ = g, where g is a
right GCD of a and b. Furthermore, SL‡(2,O) is generated by
matrices of the form(

1 z
0 1

)
,

(
0 1
−1 0

)
,

(
u 0

0
(
u−1

)‡
)
,

where z ∈ O ∩ H+ and u ∈ O×.



Illustration of the ‡-Euclidean Algorithm

I Given a, b, consider b−1a and find the closest element of
O ∩ H+—call this q.

I Define (a1, b1) = (b, a− bq). Repeat until b−1i ai = 0 or ∞.

O = Z⊕ Z
1 + i

√
11

2
⊕ Z

3i
√

11 + j
√

143

11
⊕ Z

j
√

143 + k
√

13

2
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How Many ‡-Euclidean Rings Exist?
I Remember, any maximal ‡-order that is ‡-Euclidean is a

principal ring. (Right class number = 1)

, 93-

Definite Quaternion Orders of Class Number One

par Juliusz BRZEZINSKI

, The purpose of the paper is to show how to determine all definite quater-
nion orders of class number one over the integers. First of all, let us recall
that a quaternion order is a ring A containing the ring of integers Z as a
subring, finitely generated as a Z-module and such that A = A (8) Q is a
central simple four dimensional Q-algebra. By the class number HA of A,
we mean the number of isomorphism classes of locally free left (or right-
both numbers are equal) A-ideals in A. Recall that a left A-ideal I in A
is locally free if for each prime number p, Ip -- 1~ Q9 Zp is a principal left
Ap = A Q9 Zp-ideal, where Zp denotes the p-adic integers. Two locally free
left A-ideals I and I’ define the same isomorphism class if I’ = I a, where
cxEA.

A quaternion order is called definite if A Q9 R is the algebra of the Hamil-
tonian quaternions over the real numbers R. We want to show that there
are exactly 25 isomorphism classes of definite quaternion orders of class
number one over the integers (an analoguous result, which is much more
difhcult to prove, says that there are 13 Z-orders of class number one in

imaginery quadratic fields over the rational numbers).
First of all, we want to explicity describe all quaternion orders over the

integers. This can be done by means of integral ternary quadratic forms

where Z, which will be denoted by

It is well known that each A can be given as where f is a suitable
integral ternary quadratic form and Co (f ) is the even Clifford algebra of f .

Manuscrit reru le 28 Fevrier 1994.

95

THEOREM. There are 25 isomorphism classes of Z-orders with class num-
ber 1 in definite quaternion Q-algebras. These classes are represented by
the orders Co ( f ), where f is one of the following forms (the index of the
matrix corresponding to a quadratic form f is the discriminant of the order

Proof. Let A be a quaternion Z-order with class number HA =1.. Then

_... , -

(see ~K~, Thm. 1 or [B2], (4.6)). Denoting by 0 the Euler totient function,
we have

where pi and p~ are all prime factors of d(A such that epi (A) = 1 and
= 0. This inequality implies that ~(d(A))  12 and if 4)(d(A)) = 12,

then for each prime factor p of d(A), ep(l~) _ -1. The condition ~(d(A)) 
12 says that 2  d(A)  16 or d(A) = 18, 20, 21, 22, 24, 26, 28, 30, 36, 42.

Assume now that A is a Gorenstein Z-order. Then A = Co ( f ), where
f is a primitive integral ternary quadratic form with only one class in its
genus, since TA  ~I~ (see [V], p. 88). Thus, using the tables [BI], we can
first of all eliminate all classes with ~(d(11))  12 for which TA &#x3E; 2. The



How Many ‡-Euclidean Rings Exist?
I Remember, any maximal ‡-order that is ‡-Euclidean is a

principal ring. (Right class number = 1)
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Definite Quaternion Orders of Class Number One

par Juliusz BRZEZINSKI

, The purpose of the paper is to show how to determine all definite quater-
nion orders of class number one over the integers. First of all, let us recall
that a quaternion order is a ring A containing the ring of integers Z as a
subring, finitely generated as a Z-module and such that A = A (8) Q is a
central simple four dimensional Q-algebra. By the class number HA of A,
we mean the number of isomorphism classes of locally free left (or right-
both numbers are equal) A-ideals in A. Recall that a left A-ideal I in A
is locally free if for each prime number p, Ip -- 1~ Q9 Zp is a principal left
Ap = A Q9 Zp-ideal, where Zp denotes the p-adic integers. Two locally free
left A-ideals I and I’ define the same isomorphism class if I’ = I a, where
cxEA.

A quaternion order is called definite if A Q9 R is the algebra of the Hamil-
tonian quaternions over the real numbers R. We want to show that there
are exactly 25 isomorphism classes of definite quaternion orders of class
number one over the integers (an analoguous result, which is much more
difhcult to prove, says that there are 13 Z-orders of class number one in

imaginery quadratic fields over the rational numbers).
First of all, we want to explicity describe all quaternion orders over the

integers. This can be done by means of integral ternary quadratic forms

where Z, which will be denoted by

It is well known that each A can be given as where f is a suitable
integral ternary quadratic form and Co (f ) is the even Clifford algebra of f .
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THEOREM. There are 25 isomorphism classes of Z-orders with class num-
ber 1 in definite quaternion Q-algebras. These classes are represented by
the orders Co ( f ), where f is one of the following forms (the index of the
matrix corresponding to a quadratic form f is the discriminant of the order

Proof. Let A be a quaternion Z-order with class number HA =1.. Then

_... , -

(see ~K~, Thm. 1 or [B2], (4.6)). Denoting by 0 the Euler totient function,
we have

where pi and p~ are all prime factors of d(A such that epi (A) = 1 and
= 0. This inequality implies that ~(d(A))  12 and if 4)(d(A)) = 12,

then for each prime factor p of d(A), ep(l~) _ -1. The condition ~(d(A)) 
12 says that 2  d(A)  16 or d(A) = 18, 20, 21, 22, 24, 26, 28, 30, 36, 42.

Assume now that A is a Gorenstein Z-order. Then A = Co ( f ), where
f is a primitive integral ternary quadratic form with only one class in its
genus, since TA  ~I~ (see [V], p. 88). Thus, using the tables [BI], we can
first of all eliminate all classes with ~(d(11))  12 for which TA &#x3E; 2. The



Enumerating ‡-Euclidean Rings

Theorem (Brzezinski 1995)
Every order of H with square-free discriminant and class number 1
is isomorphic (as rings) to one of the following.

Z⊕ Zi ⊕ Zj ⊕ Z 1+i+j+k
2

Z⊕ Zi ⊕ Z 1+
√

3i
2
⊕ Z i+

√
3k

2

Z⊕ Zi ⊕ Z 1+i+
√

6j
2

⊕ Z
√

6j+
√

6k
2

Z⊕ Zi ⊕ Z 1+
√

7j
2
⊕ Z i+

√
7k

2

Z⊕ Zi ⊕ Z 1+i+
√

10j
2

⊕ Z
√

10j+
√

10k
2

Z⊕ Z
√
2i ⊕ Z 1+

√
3j

2
⊕ Z
√

2i+
√

6k
2

Z⊕ Z
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2i ⊕ Z 1+
√
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√
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2
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2i ⊕ Z 1+

√
11j

2
⊕ Z
√

2i+
√
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2

Z⊕ Z
√

2i ⊕ Z 2+
√
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√

26j
4

⊕ Z
√
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√

26j+2
√

13k
4

Z⊕ Z
√
5i ⊕ Z 1+

√
5i+
√

10j
2

⊕ Z 1+
√

5i+
√

2k
2



Enumerating ‡-Euclidean Rings

Theorem
Every maximal ‡-order of H with class number 1 is isomorphic (as
rings with involution) to one of the following.

Z⊕ Zi ⊕ Zj ⊕ Z 1+i+j+k
2

Z⊕ Zi ⊕ Z 1+i+
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Z⊕ Zi ⊕ Z
√
5j ⊕ Z 1+i+

√
5j+
√

5k
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Z⊕ Z 1+
√

3i
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√
3j ⊕ Z

√
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√
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√
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√
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Enumerating ‡-Euclidean Rings

Theorem
Every maximal ‡-order of H that is a ‡-Euclidean ring is isomorphic
(as rings with involution) to one of the following. For each one, we
can take Φ = nrm.

Z⊕ Zi ⊕ Zj ⊕ Z 1+i+j+k
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